Numerical Solution via Laplace Transforms of a Fractional Order Evolution Equation

نویسنده

  • WILLIAM MCLEAN
چکیده

We consider the discretization in time of a fractional order diffusion equation. The approximation is based on a further development of the approach of using Laplace transformation to represent the solution as a contour integral, evaluated to high accuracy by quadrature. This technique reduces the problem to a finite set of elliptic equations with complex coefficients, which may be solved in parallel. Three different methods, using 2N+1 quadrature points, are discussed. The first has an error of order O(e ) away from t = 0, whereas the second and third methods are uniformly accurate of order O(e √ N ). Unlike the first and second methods, the third method does not use the Laplace transform of the forcing term. The basic analysis of the time discretization takes place in a Banach space setting and uses a resolvent estimate for the associated elliptic operator. The methods are combined with finite element discretization in the spatial variables to yield fully discrete methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method

In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...

متن کامل

Modeling Diffusion to Thermal Wave Heat Propagation by Using Fractional Heat Conduction Constitutive Model

Based on the recently introduced fractional Taylor’s formula, a fractional heat conduction constitutive equation is formulated by expanding the single-phase lag model using the fractional Taylor’s formula. Combining with the energy balance equation, the derived fractional heat conduction equation has been shown to be capable of modeling diffusion-to-Thermal wave behavior of heat propagation by ...

متن کامل

On the Numerical Solution of One Dimensional Schrodinger Equation with Boundary Conditions Involving Fractional Differential Operators

In this paper we study of collocation method with Radial Basis Function to solve one dimensional time dependent Schrodinger equation in an unbounded domain. To this end, we introduce artificial boundaries and reduce the original problem to an initial boundary value problem in a bounded domain with transparent boundary conditions that involves half order fractional derivative in t. Then in three...

متن کامل

Airy equation with memory involvement via Liouville differential operator

In this work, a non-integer order Airy equation involving Liouville differential operator is considered. Proposing an undetermined integral solution to the left fractional Airy differential equation, we utilize some basic fractional calculus tools to clarify the closed form. A similar suggestion to the right FADE, converts it into an equation in the Laplace domain. An illustration t...

متن کامل

Solution to time fractional generalized KdV of order 2q+1 and system of space fractional PDEs

Abstract. In this work, it has been shown that the combined use of exponential operators and integral transforms provides a powerful tool to solve time fractional generalized KdV of order 2q+1 and certain fractional PDEs. It is shown that exponential operators are an effective method for solving certain fractional linear equations with non-constant coefficients. It may be concluded that the com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007